Anforderungen an die Analytik für die Prozesskontrolle bei der Herstellung von Dünnschichtsolarzellen aus industrieller Sicht

Axel Neisser PRORA 2009, Fachtagung Prozessnahe Röntgenanalytik, Berlin 26-27 Nov 2009

- 1991 2001 Hahn-Meitner-Institut Berlin takes lead in thin-film technology based on Copper-Indium-Sulfide (CIS)
- **2000 2002** Nikolaus Meyer starts planning & capital acquisition for a pilot production of CIS-type PV-modules
- **April 2003** Launch of HMI spin-off Sulfurcell (EUR 16m financing closed)
- July 2004 Plant begins operation
- **July 2005** Scale-up of CIS technology completed (5 x 5 \Rightarrow 125 x 65 cm²), prototype presented to public
- Dec 2005 Market entry
- **Dec 2006** Innovation award from the governments of Berlin & Brandenburg
- 2005 2008 Continuous improvement of key performance indicators up to a running rate of 2.5 MW/a / 80 % yield
- **Jul 2008** 75 MW expansion started (EUR 85m of equity raised)

Sulfurcell's 75 MW production facility CIS-Line

Dimension

- ▶ 16.000 m² production
- > 3.000 m² offices

BIPV

> 700 facade-integrated modules

> PV test field + 0.5 MW PV power plant on roof

Sulfurcell in numbers

SULFURCELL SOLARTECHNIK GMBH

- Location: Berlin, Germany
- Site: 1.600 m² pilot plant (in operation),
 21.000 m² production (under construction) >
- Staff: 165 (Aug08)
- Revenues: EUR 4m (2008)
- Management: Dr. Nikolaus Meyer (CEO) Dr. Rüdiger Stroh (COO)

SHAREHOLDERS

- Private Equity type investors, a.o.:
- Intel Capital (Santa Clara)
- Climate Change Capital (London)
- > BEU (Vattenfall, Gaz de France) (Berlin, Paris)
- Ventegis Capital (Berlin)
- > Demeter (Paris)
- Zouk (London)
- > AIG (Zürich)
- Bankinvest (Kopenhagen)
- Engelbert Giesen (Berlin)
- Masdar (New York)
- Helmholtz Zentrum Berlin (Hahn-Meitner-Institut)
- Management

Sulfurcell serves the market with high-quality products with a focus on building integrated photovoltaics (BIPV)

SULFURCELL'S PRODUCT PORTFOLIO

Framed modules

- Max. mechanical load (4800 kPa/m²) Optimized for minimum costs
- Applicable as cladding element

Frameless modules

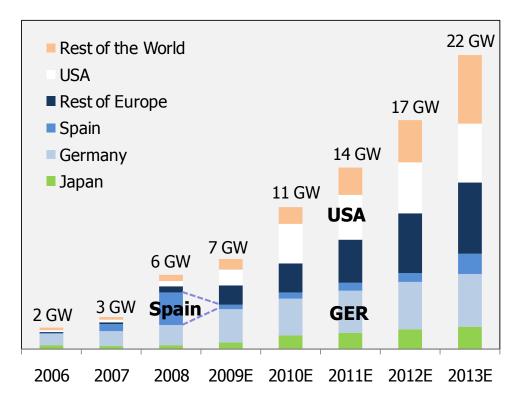
- Excellent self-cleaning

Modules for roof integration

- Aesthetic excellence
- Replacing roof tile (rainproof)

OUALITY

All products passed accelerated life-time tests (IEC 61646) and are certified by German TÜV



Market development

- 2009: Collapse of the Spanish market and impact from the global economic crisis shifted market into a oversupply situation
 - ⇒ Large manufacturer suffer from over-capacity
 - \Rightarrow 30 % price drop
- German incentive program and low system prices allow high margins on PV investments and attract international equity and debt investors
 - ⇒ German market vital and globally dominating since June 09
- Long-term perspective for the PV market encouraging due to fast growth of US and Mediterranean markets

Annual installations of PV modules

Source: 2009 Forecast of the European PV Industry Association (Police-driven scenario)

Thin-film solar modules based on materials from the CIS/CIGS-family: Highest efficiency potential and features predestined for solar architecture

WAFER

Crystalline Silicon (poly-Si)

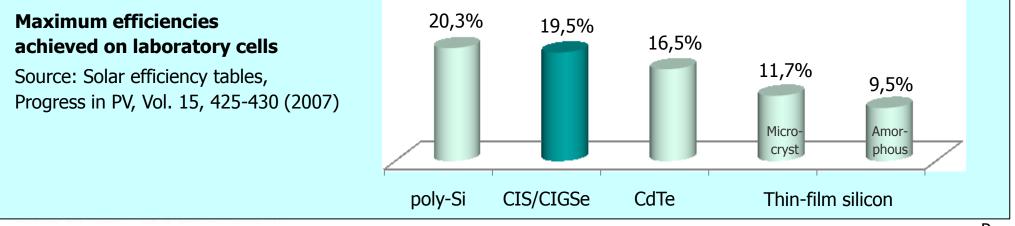
- Inherently high manufacturing costs
 - Substantial need of high-purity silicon
 - Longish production process
- Unattractive for solar architecture

THIN-FILM

CIS-materials (CIS/CIGS) Only thin-film technique

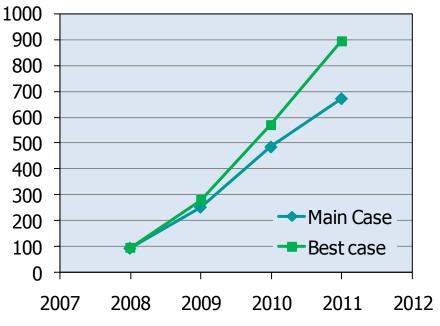
- Only thin-film technique equalling efficiency potential of poly-crystalline Silicon (20 %)
- Modification of material composition give room for continuous improvement
- Attractive outward appearance

THIN-FILM


Cadmium Telluride (CdTe)

- Today lowest manufacturing costs due to economy-of-scale (First Solar 08: > 250 MW)
- Concerns on certain markets regarding environmental and health impact

THIN-FILM

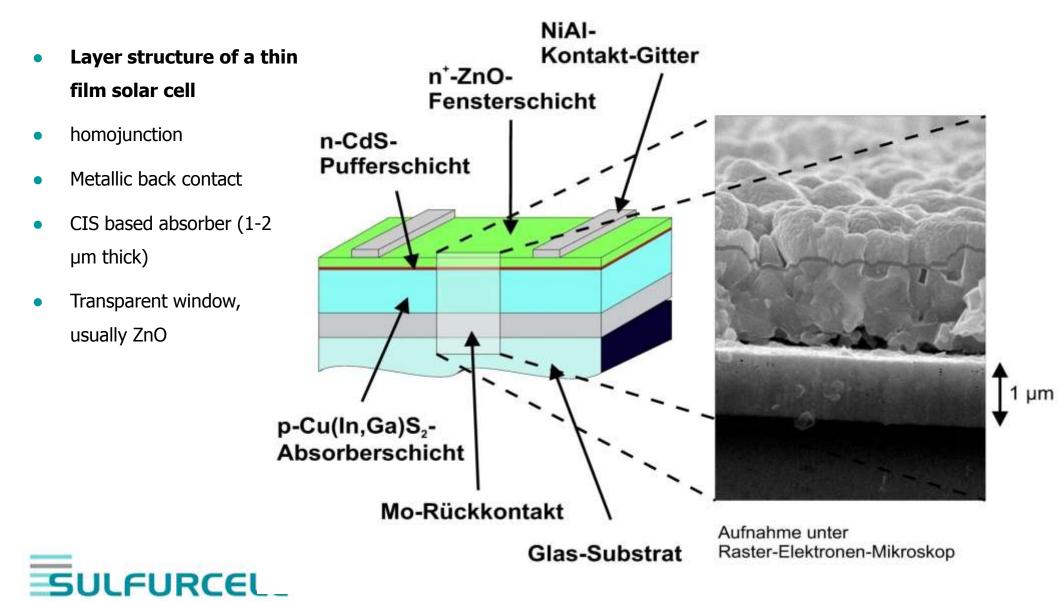

Thin-film silicon

- Today's commercial products exhibit 6 – 8% efficiency in spite of 20 years of optimization
- High capex per MW
- 10 20 % efficiency degradation during first year of operation

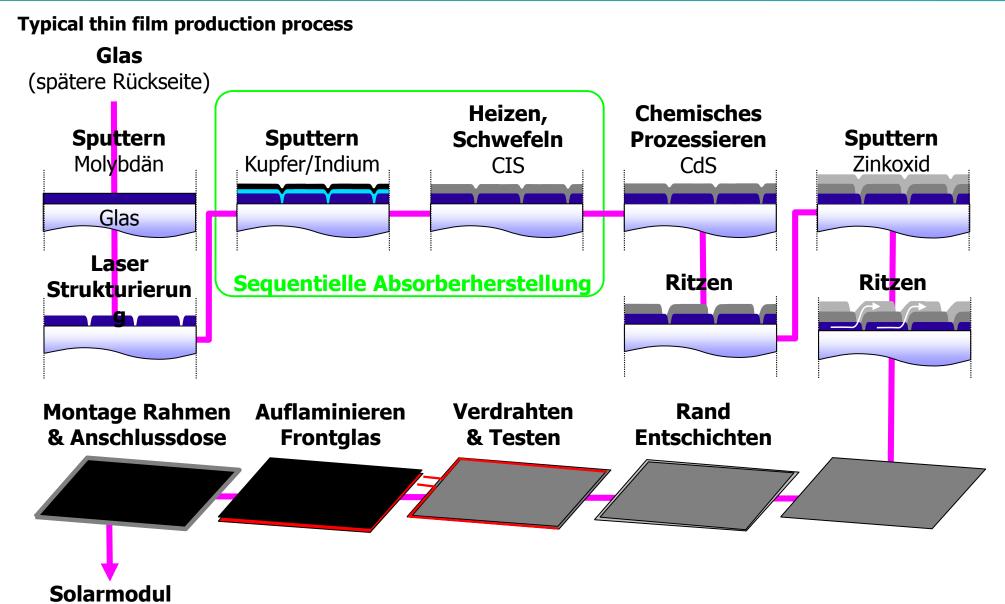
- More than twenty companies in the world started industrial manufacturing of CIS-type PV modules
- Production volume will rise to more than 500 MW by 2011
- Cost position depends on
 - Module efficiency (today: 7 11%)
 Yield (today: 30 90%)
 Capex costs (uptime) (today: 0.30 0.60 €/W*)
- Cost perspective for a <u>mature</u> high volume production of 11% modules (> 75 MW/a): 0.5 – 0.7 €/W

Source: LBBW 2009

* Annual depreciations + capital costs = 20% of capex ($\in 1.5 - 3m$ per MW)



Broad variety of industrial manufacturing methods for CIS/CIGSe

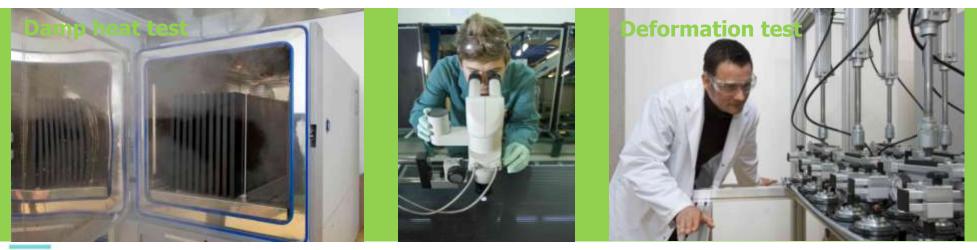

	CIS/CIGSe manufacturing (process/technique)		Substrate	Module assembling (serial connection)
Würth (GER)	1 step	Coevaporation	Glass	Integrated
Solibro (GER)				
Solyndra (US)			Glass tubes	
Global (US)		Coevaporation (role-to-role)	Metallic foil	Post cell processing
Solarion (GER)			Polymer foil	
Avancis (GER)	2 step	Sputtering + Annealing	Glass	Integrated (patterning)
Centrotherm (GER)				
Honda (JN)				
Johanna (GER)				
Showa Shell (JN)				
Sulfurcell (GER)				
Odersun (GER)		Sputtering + Annealing (role-to-role)	Metallic foil	Post cell processing
Nanosolar (US)		Spraying + Annealing (role-to-role)		

Thin film solar cell

Manufacturing – layer deposition, patterning, finishing

Continuous quality control – a daily in-house job at Sulfurcell

Accelerated life-time test – Sulfurcell resources


- Damp heat test
- Dry heat test
- Thermal cycling test
- Humidity-Freeze test
- UV irradiation
- Mechanical load and deformation test
- Light-soaking test

Process control

- Electrical and optical analysis (spectroscopy)
- Microscopic analysis of layer structure
- Homogeneity analysis
- X-ray analysis

System test

- Monitoring of PV-test systems
- Qualification of inverters and mounting systems

- CIS materials are "young" industrial materials. Many material or device effects are either not yet known or not common sense. Production stability and quality assurance need:
 - CIS related expertise of the manufacturer's technology team
 - Production experience with CIS-based technology
 - Scientific support
 - Industrial knowledge

This is different to the crystalline Silicon world where processes are well-defined and materials perfectly known.

- Production and quality issues in CIS manufacturing are frequently under-estimated. It is more than
 efficiency that needs to be optimized (a.o. product stability, cycle-times, yield, process % quality controls).
 Production phases with poor performance indicators or product issues last typically years not quarters.
- Sophisticated equipment for advanced process control will help to accelerated learning curves, shorten ramp up times of production volumes → accelerate industrialization of CIS based technologies

Layer characterisation

- Film thickness
- Stoichiometry / Layer composition
- Phase composition
- Depth profiling (R&D)

In-situ diagnostics

- In-line process control of film thickness
- Monitoring of very fast thermal processes for absorber layer growth (R&D)

Reaction kinetics

• Fundamental process and equipment optimization - (R&D)

Requirements for analytics from an industrial point of view

- Rapid measurements integration times below 30sec required
- Reliable
- Reproducable
- Robust compatible with production environment (no clean rooms)
- Affordable
- In-situ diagnostics
 - In-line process control of film thickness, Monitoring of very fast thermal processes for absorber layer growth
 - (R&D), Reaction kinetics: Fundamental process and equipment optimization (R&D)

